Skip to main content

Common bit prefix length for two integers

Here's a neat trick I discovered a couple of months back: given two signed or unsigned integers of the same bit width, you can calculate the length of their common prefix very efficiently:


  int common_prefix_length(int a, int b)
  {
    return __builtin_clz(a ^ b);
  }

What's this doing? Let's break it down:

a ^ b is the bitwise-xor of a and b. The boolean xor operation is true when one of it's inputs is true and the other is false; or false if both have the same value. Another way to put this is that xor returns true when its inputs are different and false if they're the same. The bitwise-xor operation then, returns a value which has zeros for every bit that is the same in both a and b; and ones for every bit that's different.

__builtin_clz is a GCC intrisinc function which counts the number of leading zero bits of its argument. It compiles down to a single machine code instruction on hardware that supports it (which includes every Intel chip made in this decade). The Visual C++ equivalent is the _BitScanReverse intrinsic, which has a slightly more complicated API; implementing the above with it is left as an exercise for the reader. :-)

Passing the result of a ^ b to __builtin_clz means we're counting the leading zero bits in a number where a zero bit indicates that the corresponding bits in a and b had the same value; which is exactly how we get the length of the common prefix.

You can get the common suffix in the same way. The only difference is that you use the __builtin_ctz intrinsic (Visual C++: _BitScanForward) instead, to count the trailing zero bits:


  int common_suffix_length(int a, int b)
  {
    return __builtin_ctz(a ^ b);
  }

Neat huh?

Comments

Popular posts from this blog

How to outperform std::vector in 1 easy step

Everyone who's familiar with C++ knows that you should avoid resizing a std::vector inside a loop wherever possible. The reasoning's pretty obvious: the memory allocated for the vector doubles in size each time it fills up and that doubling is a costly operation. Have you ever wondered why it's so costly though? It's tempting to assume that because implementations of the STL have been around for so long that they must be pretty efficient. It turns out that's a bad assumption because the problem, in this case, is the standard itself: specifically, the allocator interface. The allocator interface provides two methods that obtain and release memory: allocate allocates uninitialized storage (public member function) deallocate deallocates storage (public member function) (taken from this page ). What's missing is a   way of growing an existing memory allocation in place. In C this is provided by the realloc function, but there's no equiva...

Triangle bounding boxes in a single byte

Just thought of a way to store the bounding box for a single triangle in only one byte. It's not really practical or something you'd ever really want to use, but what the hell. Assume we have some kind of indexed mesh structure with a list of vertex positions and a list of triangle indices:   struct Mesh {     std::vector<vec3> verts;     std::vector<uvec3> triangles;   }; We can find the bounding box of a triangle by taking the min and max of all three vertices:   vec3 Mesh::lowerBound(uint32_t tri) const {     vec3 v0 = verts[triangles[tri].x];     vec3 v1 = verts[triangles[tri].y];     vec3 v2 = verts[triangles[tri].z];     return min(min(v0, v1), v2);   }   vec3 Mesh::upperBound(uint32_t tri) const {     vec3 v0 = verts[triangles[tri].x];     vec3 v1 = verts[triangles[tri].y];     vec3 v2 = verts[triangles[tri].z];     return ...

Solar Sailor: semi-playable

More progress! Solar Sailor is now kinda- sorta- playable. You can't win or lose yet, but it does have all this goodness: There are gates that you have to pass through. There's a direction line showing you which gate you have to pass through next. The NPC racers now have some basic AI and will actually try to fly through the gates instead of just drifting serenely and hoping for the best. You can try it out yourself here! If you can't be bothered to try it out, this is what it's looking like now: If you do try it, I'd really appreciate any feedback - especially bug reports!