Skip to main content

Solar Sailor Post-mortem

Solar Sailor, for those of you who aren't yet aware, is a fairly simple racing game that I made for the Ludum Dare 48 hour challenge.

Here's the competition entry page:
Or you can get straight into it here:
Making a playable game in just 48 hours is a pretty intense experience. This is my attempt to make sense of it all, with the benefit of a few days worth of hindsight.

What went right

I used Javascript and WebGL to write the game. Although I was fairly new to Javascript*, it turned out to be a great language for writing a game:
  • Built-in support for object literals (a.k.a JSON) made it very easy to get content into the game.
  • Being able to just hit reload in the browser to test out changes made for a very tight edit-run loop.
  • You effectively get image and font loading for free, thanks to the web browser. Sound too, theoretically, though I didn't get far enough to need that.
My content pipeline for the game came together really nicely towards the end. I was drawing the race track using Nuke's roto paint node and exporting it to JSON with a custom python script. Unfortunately it was about 2 hours before the final deadline by the time I got this in place. It would have only been a matter of minutes to add more tracks - but I didn't have time to make a menu system for choosing them.

Finally, using Dropbox as my web host was a really good choice. It meant that deploying the game was as simple as doing a recursive directory copy and almost instant. The time I didn't waste with upload forms I was able to spend working on the game.

What went wrong

I struggled to come up with an idea to fit the theme. I did some unsuccessful brainstorming after the theme was announced & didn't come up with anything too inspiring. I had a game in mind before the start of the competition, but I couldn't find a way to make it fit the theme & it just proved to be a distraction. I ended up starting to write code without a clear idea of the game I was making: big mistake. It wasn't until Saturday afternoon (about 18 hours into the compo) that I realised I wasn't getting anywhere. I took a walk away from the computer for a couple of hours to rethink & that was when I came up with the idea for Solar Sailor.

Once I'd got the idea for Solar Sailor, I decided I wanted a Geometry Wars kind of look for it: glowing polygonal outlines, simple shapes, etc. I wasted an awful lot of time trying to write a glow effect which ultimately didn't work, in an attempt to get that look. Worse still, I was doing this before I'd even got the most basic gameplay elements in place. As a result, the level design was left 'til the last minute & I didn't have time for any half-decent artwork.

After submitting the game, I got some people to try it out & they all had the same comment: WTF is going on?! If I'd done this playtesting earlier - if I hadn't been so preoccupied with writing glow effects - I would have realised that the game needed a tutorial. Badly.

Lessons learnt

Stick with Javascript & WebGL kiddo, you're onto a winner there. Ditto for Dropbox as a web host.

Don't start working until you've come up with a game idea that you actually like. Even if it feels unproductive, spending extra time thinking about the theme and what to do with it is a lot more productive than throwing away a days work and finding yourself back at the same point.

Polish doesn't make a game - gameplay does. Good gameplay can excuse bad graphics but the reverse isn't true. Especially glow effects. The main lesson is to always work on gameplay before trying to add graphical polish. Make it fun, then make it look good. It's never completely cut and dried, but that's a pretty good rule of thumb.


Popular posts from this blog

Octree node identifiers

Let's say we have an octree and we want to come up with a unique integer that can identify any node in the tree - including interior nodes, not just leaf nodes. Let's also say that the octree has a maximum depth no greater than 9 levels, i.e. the level containing the leaf nodes divides space into 512 parts along each axis.

The encoding The morton encoding of a node's i,j,k coordinates within the tree lets us identify a node uniquely if we already know it's depth. Without knowing the depth, there's no way to differentiate between cells at different depths in the tree. For example, the node at depth 1 with coords 0,0,0 has exactly the same morton encoding as the node at depth 2 with coords 0,0,0.

We can fix this by appending the depth of the node to the morton encoding. If we have an octree of depth 9 then we need up to 27 bits for the morton encoding and 4 bits for the depth, which still fits nicely into a 32-bit integer. We'll shift the morton code up so that i…

How to outperform std::vector in 1 easy step

Everyone who's familiar with C++ knows that you should avoid resizing a std::vector inside a loop wherever possible. The reasoning's pretty obvious: the memory allocated for the vector doubles in size each time it fills up and that doubling is a costly operation. Have you ever wondered why it's so costly though?

It's tempting to assume that because implementations of the STL have been around for so long that they must be pretty efficient. It turns out that's a bad assumption because the problem, in this case, is the standard itself: specifically, the allocator interface.

The allocator interface provides two methods that obtain and release memory:

allocate allocates uninitialized storage
(public member function)deallocate deallocates storage
(public member function)

(taken from this page).

What's missing is away of growing an existing memory allocation in place. In C this is provided by the realloc function, but there's no equivalent in the std::allocator interfa…

Faster morton codes with compiler intrinsics

Today I learned that newer Intel processors have an instruction which is tailor-made for generating morton codes: the PDEP instruction. There's an instruction for the inverse as well, PEXT.

These exist in 32- and 64-bit versions and you can use them directly from C or C++ code via compiler intrinsics: _pdep_u32/u64 and _pext_u32/u64. Miraculously, both the Visual C++ and GCC versions of the intrinsics have the same names. You'll need an Intel Haswell processor or newer to be able to take advantage of them though.

Docs for the instructions:

Intel's docsGCC docsVisual C++ docs
This page has a great write up of older techniques for generating morton codes:

Jeroen Baert's blog ...but the real gold is hidden at the bottom of that page in a comment from Julien Bilalte, which is what clued me in to the existence of these instructions.
Update: there's some useful info on Wikipedia about these intructions too.